Response facilitation from the "suppressive" receptive field surround of macaque V1 neurons.
نویسندگان
چکیده
In primary visual cortex (V1), neuronal responses to optimally oriented stimuli in the receptive field (RF) center are usually suppressed by iso-oriented stimuli in the RF surround. The mechanisms and pathways giving rise to surround modulation, a possible neural correlate of perceptual figure-ground segregation, are not yet identified. We previously proposed that highly divergent and fast-conducting top-down feedback connections are the substrate for fast modulation arising from the more distant regions of the surround. We have recently implemented this idea into a recurrent network model (Schwabe et al. 2006). The purpose of this study was to test a crucial prediction of this feedback model, namely that the suppressive "far" surround of V1 neurons can be facilitatory under conditions that weakly activate neurons in the RF center. Using single-unit recordings in macaque V1, we found iso-orientation far-surround facilitation when the RF center was driven by a low-contrast stimulus and the far surround by a small annular stimulus. Suppression occurred when the center stimulus contrast or the size of the surround stimulus was increased. This suggests that center-surround interactions result from excitatory and inhibitory mechanisms of similar spatial extent, and that changes in the balance of local excitation and inhibition, induced by surround stimulation, determine whether facilitation or suppression occurs. In layer 4C, the main target of geniculocortical afferents, lacking long-range intra-cortical connections, far-surround facilitation was rare and large surround fields were absent. This strongly suggests that feedforward connections do not contribute to far-surround modulation and that the latter is generated by intra-cortical mechanisms, likely involving top-down feedback.
منابع مشابه
Selectivity and spatial distribution of signals from the receptive field surround in macaque V1 neurons.
The responsiveness of neurons in V1 is modulated by stimuli placed outside their classical receptive fields. This nonclassical surround provides input from a larger portion of the visual scene than originally thought, permitting integration of information at early levels in the visual processing stream. Signals from the surround have been reported variously to be suppressive and facilitatory, s...
متن کاملContrast-dependence of surround suppression in Macaque V1: Experimental testing of a recurrent network model
Neuronal responses in primary visual cortex (V1) to optimally oriented high-contrast stimuli in the receptive field (RF) center are suppressed by stimuli in the RF surround, but can be facilitated when the RF center is stimulated at low contrast. The neural circuits and mechanisms for surround modulation are still unknown. We previously proposed that topdown feedback connections mediate suppres...
متن کاملThe role of feedback in shaping the extra-classical receptive field of cortical neurons: a recurrent network model.
The responses of neurons in sensory cortices are affected by the spatial context within which stimuli are embedded. In the primary visual cortex (V1), orientation-selective responses to stimuli in the receptive field (RF) center are suppressed by similarly oriented stimuli in the RF surround. Surround suppression, a likely neural correlate of perceptual figure-ground segregation, is traditional...
متن کاملReaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons?
It is commonly assumed that the orientation-selective surround field of neurons in primary visual cortex (V1) is due to interactions provided solely by intrinsic long-range horizontal connections. We review evidence for and against this proposition and conclude that horizontal connections are too slow and cover too little visual field to subserve all the functions of suppressive surrounds of V1...
متن کاملDynamics of extraclassical surround modulation in three types of V1 neurons.
Visual stimuli outside of the classical receptive field (CRF) can influence the response of neurons in primary visual cortex (V1). While recording single units in cat, we presented drifting sinusoidal gratings in circular apertures of different sizes to investigate this extraclassical surround modulation over time. For the full 2-s stimulus time course, three types of neurons were found: 1) 68%...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 98 4 شماره
صفحات -
تاریخ انتشار 2007